Reducing dose calculation time for accurate iterative IMRT planning.
نویسندگان
چکیده
A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R = D(SC)/D(PB)) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D(PB) x R is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation by a factor of 2 to 8 compared with pure SC optimization, without compromising the quality or accuracy of the final treatment plan.
منابع مشابه
Iterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملPractical methods for improving dose distributions in Monte Carlo‐based IMRT planning of lung wall‐seated tumors treated with SBRT
Current commercially available planning systems with Monte Carlo (MC)-based final dose calculation in IMRT planning employ pencil-beam (PB) algorithms in the optimization process. Consequently, dose coverage for SBRT lung plans can feature cold-spots at the interface between lung and tumor tissue. For lung wall (LW)-seated tumors, there can also be hot spots within nearby normal organs (example...
متن کاملDose calculations accuracy of TiGRT treatment planning system for small IMRT beamlets in heterogeneous lung phantom
Background: Accurate dose calculations in small beamlets and lung material have been a great challenge for most of treatment planning systems (TPS). In the current study, the dose calculation accuracy of TiGRT TPS was evaluated for small beamlets in water and lung phantom by comparison to Monte Carlo (MC) calculations. Materials and Methods: The head of Siemens Oncor-impression linac...
متن کاملThree-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT
Background: Some tissues in human body are radiobiologically different from water and these inhomogeneity must be considered in dose calculation in order to achieve an accurate dose delivery. Dose verification in complex radiation therapy techniques, such as intensity‐modulated radiation therapy (IMRT) calls for volumetric, tissue equivalent and energy independent dosimeter. The purpose of this...
متن کاملAssessment of out-of-field dose calculation algorithm by commercial treatment planning systems in IMRT and 3DCRT
Abstract Introduction: The accuracy an assessment of out- of- field dose due to secondary cancer risk is clinically important. Actually radiotherapy treatment planning systems are not commissioned for the out-of-field dose calculations, so the estimation of dose distributions by TPSs beyond the borders of treatment fields is not well calculate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2002